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Based on realistic modeling of the electron density of the ionosphere and using a
dipole moment approximation for the Earth’s magnetic field, one is able to estimate
the effect of the ionosphere on the Global Positioning System (GPS) signal for a
ground user. The lowest order effect, which is on the order of 0.1-100 m of group
delay, is subtracted out by forming a linear combination of the dual frequencies of
the GPS signal. One is left with second- and third-order effects that are estimated
typically to be ~0-2 cm and ~0-2 mm at zenith, respectively, depending on the
geographical location, the time of day, the time of year, the solar cycle, and the
relative geometry of the magnetic field and the line of sight. Given the total electron
content along a line of sight, the authors derive an approximation to the second-
order term which is accurate to ~90 percent within the magnetic dipole moment
model; this approximation can be used to reduce the second-order term to the
millimeter level, thus potentially improving precise positioning in space and on the
ground. The induced group delay, or phase advance, due to second- and third-order
effects is examined for two ground receivers located at equatorial and mid-latitude
regions tracking several GPS satellites.

August 15, 1992

Modeling the Global Positioning System Signal Propagation

I. Introduction
The Global Positioning System (GPS) consists of 24

satellites, evenly distributed in 6 orbital planes around the
globe, at an altitude of about 20,200 km. Precise posi-
tioning of the GPS satellites, as well as ground and space
users, is now reaching a few parts in 10° [1-6]. In addition,
the GPS has been heavily utilized in a host of geodetic and
other applications. These include seismic tectonic motions
[7-9], Earth orientation studies [10,11], gravimetry [12], at-
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mospheric water vapor calibration [13,14], and ionospheric
monitoring [15]. Precise positioning and other GPS-based
applications, however, require a very good understanding
of all effects on the GPS signal as it propagates through
the Earth’s atmosphere, so that all effects can be solved
for or modeled.

The GPS transmits two right-hand circularly polarized
(RCP) signals at L-band frequencies: L1 at 1574.42 MHz



and L2 at 1227.6 MHz, which correspond to wavelengths
of 19.0 cm and 24.4 cm, respectively. These are modulated
by a pseudorandom precision code (P-code) at a frequency
of 10.23 MHz [16]. [The additional lower frequency course
acquisition (C/A) modulation is not of concern here] A
single measurement for a given transmitter and receiver
pair will consist of four observables that will be denoted
here by L,, Ls for the accumulated carrier phase mea-
surements at the two frequencies and P;, P, for the cor-
responding P-code pseudorange. In addition to the geo-
metric range delay, the signals will experience delays, or
phase advances, due to the presence of the ionosphere and
neutral atmosphere.

The delay due to the neutral atmosphere is the same
for all observables; its effect is on the order of 2 m and can
be solved for to better than a centimeter [13,14]. How-
ever, due to the dispersive nature of the ionosphere, the
group delay caused by it (or phase advance) is frequency
dependent, and is on the order of 0.1-100 m, depending
on the time of day, the time of year, and the solar cycle.
If the ionospheric effect on signal delay (or advance) is
expanded in powers of inverse frequencies, then the lowest
order term (1/f2), by far the most dominant, can be solved
for and subtracted out by virtue of the dual frequencies of
the GPS. Remaining higher order terms are on the or-
der of submillimeters to several centimeters, which remain
embedded in the signal and contribute to range and accu-
mulated phase errors. While the first-order term depends
simply on the total electron content (TEC), namely the
integrated electron density inside a columnar cylinder of
unit area between the transmitter and the receiver, higher
order terms depend on the coupling between the Earth’s
magnetic field and the electron density everywhere along
the line of sight. In order to estimate the higher order
effects on the GPS observables, the authors modeled the
ionosphere by a sum of Chapman layers and the Earth’s
magnetic field by that of a dipole moment. Such a model
will make it possible to estimate higher order ionospheric
effects at different geographical locations on the ground as
well as their sensitivity to the electron density distribu-
tion. It will be demonstrated that knowledge of the TEC
can be used to calibrate most of the second-order effect
and reduce P-code and phase measurement errors to a few
millimeters.

Due to the inhomogeneity of the propagation medium,
the GPS signal does not travel along a perfectly straight
line. Moreover, since the medium is dispersive, the two
frequencies will take two slightly different paths. By ap-
plying the empirical formula given by Brunner and Gu [17]
on the ionospheric model used below, the residual range
error between the dual-frequency corrected range and the

true range, due to bending alone, is estimated to be ~4 mm
at a 10-deg elevation angle and less than a millimeter for
elevations above 30 deg. The bending effect will be ignored
in the following analysis; the two signals will be assumed
to travel along the same straight line.

A more elaborate modeling of higher order ionospheric
effects, where bending is taken into account, has been con-
sidered by Brunner and Gu [17]; see also [18]. In their pa-
per, the international geomagnetic reference fields (IGRF)
and a Chapman profile of the ionosphere were used to es-
timate the residual range error. They also proposed an
improved linear combination that corrects for the second-
and third-order terms, as well as for bending. Their im-
proved linear combination requires knowledge of N,,, and
hm, the electron density peak and its altitude, respectively.
In this article, the second- and third-order terms are con-
sidered separately. Here the authors estimate that the
second-order term is dominant most of the time over the
third-order and the curvature terms. A method of mod-
eling the second-order effect based on a thin shell model
of the ionosphere and a dipole magnetic field is suggested.
The second- and third-order errors are considered at dif-
ferent geographical locations while tracking different satel-
lites. It is demonstrated that knowledge of the TEC alone
can be used to reduce the higher order effects to a few
millimeters.

Il. Earth’s lonosphere

The Earth’s ionosphere extends from an altitude of
about 80 to 1000 km. It is a macroscopically neutral ion-
ized gas consisting principally of free electrons, ions, and
neutral atoms or molecules. Ions in that region are 2000
to 60,000 times more massive than electrons. Thus, at
the frequencies used for radio communication, the range
of movement of an ion caused by the electric field of a
radio wave is smaller than that of an electron by about
the same factor. This implies that the ions can, for most
purposes, be ignored [19].

The electron density profile exhibits several distinct re-
gions (E, F1, and F2) as a result of the competing processes
of particle production, loss, and transport. The maximum
electron densities (10'% to 10'® m~3) are observed at the
F2 peak; the peak altitude ranges from 250 to 350 km at
mid-latitudes and from 350 to 500 km at equatorial lati-
tudes. The F1 region, which is present during the day but
absent at night, has a peak near the 200-km altitude and
is 3-5 times smaller than that of F2. The E peak den-
sity is about one order of magnitude smaller than the F2
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peak and is typically located at the 100- to 120-km alti-
tude. During daytime there is also a D region below the
E region, with a peak at the 80-km altitude [20].

lll. Propagation of Electromagnetic Waves in
the lonosphere

When a magnetostatic field By is applied to a plasma,
the plasma becomes anisotropic for the propagation of
electromagnetic waves. That is, the scalar dielectric con-
stant of the plasma is transformed into a tensor. To study
the propagation and polarization properties of a plane
monochromatic wave in a magnetically biased homoge-
neous lossless plasma, the plasma is regarded as a con-
tinuous medium whose conductivity is zero, whose perme-
ability i1s equal to that of a vacuum, and whose dielec-
tric constant is a tensor. By solving the Helmholtz wave
equation subject to proper constitutive relations, one can
obtain the expressions for the fields and for the index of
refraction. The index of refraction, n, for the Earth’s iono-
sphere is given by the Appleton-Hartree formula [21], as
follows:

n? =1- 2X(1 - X) (1)
21 - X)-Y? :i:\/}" +4(1 - X)2¥}
where
f")2 (Ne /ax?e m)
x=() =227 fol 2
(% 2 @
Y, =Ysin 0p; Y} =Y cos 0p (3)

N is the number density of electrons; e and m are the
electron charge and mass, respectively; €, is the permit-
tivity of the free space; fy, f,, and f are the plasma, gyro,
and carrier frequencies, respectively; and fp is the an-
gle between the Earth’s magnetic field, By, and the di-
rection of propagation of the wavefront, k. By definition,
Y = eBo/27rfm and since e is negative, Y is antlparallel
to Bg The plasma frequency is the natural frequency of
oscillation for a slab of neutral plasma with density N af-
ter the electrons have been displaced from the ions and are
allowed to move freely. The gyro frequency is the natural
frequency at which free electrons circle around the mag-
netic field lines. For the Earth’s ionosphere, with N = 1012
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electrons/m?, the plasma frequency fp = 8.9 MHz. The
gyro frequency for an electron in the Earth’s magnetic field
(2 x 1075 tesla) is f, &~ 0.59 MHz.

The plus and minus signs of Eq. (1) correspond to the
ordinary and extraordinary wave modes of propagation,
respectively. In general, these two waves are elliptically po-
larized with left and right senses of rotation, respectively.
As a result of different phase velocities of the two waves,
the total wave (the sum of ordinary and extraordinary
waves) undergoes Faraday rotation as it passes through
the ionosphere. When the carrier frequency is large, as
compared with plasma and gyro frequencies, the principal
modes of propagation are dominantly circularly polarized.
This is the case for the GPS carrier frequencies.

Assuming that Y << 2|cos8p|(1 — X)/sin®@g, the in-
dex of refraction can be expanded in inverse powers of fre-
quency. Ior the GPS carrier frequencies, one has (f,/f) =
5.65x107% and 7.25x 1073, as well as (f,/f) = 3.75x 10~*
and 4.81 x 10~4 for L1 and L2, respectively. Therefore,
the stated assumption is valid for GPS frequencies up to a
value of fp ~ 89 deg. The expansion of Eq. (1) up to the
fourth inverse powers of frequency gives

ny =1— -;—X + %Xchos(?BI
1 1 9 2
- ZX .2_A +Y?(1 4 cos® 8p) (5)

The second, third, and fourth terms on the right-hand
side of Eq. (5) are proportional to the inverse square, in-
verse cube, and inverse quartic powers of frequency, respec-
tively. The two values of n refer to the ordinary (+) and
extraordinary (-) waves. At this point it should be noted
from Eq. (5) that the index of refraction is smaller than
unity, which corresponds to a phase velocity greater than
the speed of light (phase advance). The group refractive
index, on the other hand, given by n8™"P = n+ f(dn/df),
can be written as

, 1.
n§P =14 §X+XY|cos fs)

3 1
+3X |5X + Y2(1 4 cos? 03)] (6)
The group delay of a signal passing through the iono-
sphere, relative to vacuum as a reference, can be rewritten
as



r§oUP = %/(niml'p cosa — 1)d! (7)

where d!l is an element of length along the line of sight, ¢
is the velocity of light in a vacuum, and « is the angle be-
tween the wave normal and the ray direction. This angle
has significance in anisotropic media, where the direction
of the wave normal is, in general, different from the direc-
tion of energy propagation. Angle a can be found from
the following relation: tan o = (1/n)0n/805. By using
Eq. (5) and the definition of a, it is easy to show that for
the GPS carrier frequencies cos « is essentially unity. By
using Egs. (5)—(7), the GPS observables can be written
[ignoring the left-hand circularly polarized (LCP) com-
ponent of the GPS signal, which has <0.35 percent and
<2.5 percent of the total power, for L1 and L2, respec-
tively] as

P=p+ qz+ f1 (8a)
Pr=p+ 22+ 3+?% (8)
Li=p+ni) 7 %fi?_éfv_f‘ (9a)
Ly=p4ngho— L L& 11 (9b)

220 3
where

= %/fgdzz 40.3/Ndl =40.3 TEC  (10)
s= /f_qu2 |cos 6‘B|d1=7527c/NBo |cos Bgldl (11)

r= 2437/N2d1+4.74 X 1022/NB§ {1+ cos®0p)dl
(12)

TEC is the total electron content along the line of sight,
and A is the operating wavelength. In Egs. (8) and (9), p
corresponds to the geometrical distance plus all the nondis-
persive terms that are common to both frequencies, such
as clocks, transmitter and receiver delays, and the neutral
atmospheric delay. In Eq. (9), n;A; and nsAy correspond
to unknown integer numbers of cycles that are constants
for a given transmitter and receiver pair over a continu-
ous tracking period. In addition to the terms shown on

the right-hand side of Egs. (8) and (9), there are terms
due to multipath, thermal noise, phase center variations,
and a transmitter and receiver relative geometry depen-
dent term; however, these are not the subject of this study,
and are omitted from Eqgs. (8) and (9).

IV. lonospheric Layers and Geomagnetic
Field Models

To proceed with the computation of the higher order
delays, one has to assume models for the electron density,
N, and the Earth’s magnetic field, B,. For the electron
density distribution, the Chapman layer model is chosen.
This model is derived by assuming a homogeneous com-
position for air at a constant temperature. The curva-
ture of the Earth is neglected, and it is assumed that the
atmosphere is horizontally stratified and the scale height
H, is independent of height. As the solar radiation trav-
els downward through the atmosphere, it is absorbed and
hence ionization is produced. The rate of electron produc-
tion is a function of height above mean sea level h and
the sun’s zenith angle x, which is the angle between the
ray from the sun and the zenith. From considerations of
the production of electrons by photoionization and their
removal by recombination, the following formula for the
electron density distribution can be obtained [22]:

1
N = Npaxexp i(l—z—e"‘z SecX) (13)

where Npax is the maximuin value of the electron density
at an altitude of hpax and z = (b — hnax)/H,. When
x is near 90 deg, as near sunrise and sunset, the plane
Earth approximation fails. To correct for this, sec y in
Eq. (13) is replaced with the grazing incidence function
Ch(z, x). This function, which applies accurately only to
a spherically symmetric atmosphere with H, independent
of height, can be expressed as

1 2 2
Ch(z,x) = <§7ra:sin,\*) el/3wcos™x

1/2
1:te1f( T cos )\) ] (14)

where z = (Rg + h)/H,, Rg is the Earth’s radius, and
erf(.) is the error function. The plus (minus) sign refers
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to x > 90 deg (x < 90 deg). Figure 1 is a plot of the elec-
tron density distribution versus height for two different
solar zenith angles x = 0 deg and x = 64 deg. In obtain-
ing this distribution, three different Chapman layers were
added together so that the distribution can resemble the
ionospheric Fy, Fy, and E layers: the E layer with a maxi-
mum at 110 km, the F1 layer with a maximum at 210 km,
and the F2 layer with a maximum at 350 km. This fig-
ure is representative of a daytime profile typical of a year
near sunspot maximum. The D layer, which is normally
present during the daytime, is not included. During night-
time, the F1 layer disappears and the electron density for
a given height is about 10-100 times smaller than that of
daytime. In a solar minimum, the same features (D, E,
F1, and F2 layers) are preserved with the electron density
scaled down roughly by a factor of 10.

Next, one must model the Earth’s magnetic field. A
first approximation to the geomagnetic field near the sur-
face of the Earth is an Earth-centered dipole with its
axis tilted to intersect the Earth at 78.5 deg N latitude,
291.0 deg E longitude, which corresponds to the geomag-
netic north pole; and at 78.5 deg S latitude, 111.0 deg
E longitude, which corresponds to the geomagnetic south
pole [20] (see Fig. 2).

At this point one must distinguish between two refer-
ence frames with a common origin at the Earth’s center.
The geodetic frame is Earth-fixed and is given by %,¥, 2,
where 2 is along the Earth’s spin axis, and x is point-
ing toward 0 deg longitude. The geomagnetic frame, on
the other hand, is obtained by first rotating the geodetic
frame by an angle 8 = 291 deg around its Z axis, and
then applying a second rotation by an angle § = 11.5 deg
around the new y,, axis (Fig. 3). This geomagnetic frame
is denoted by X, ¥m, Z» and is constructed so that ,, is
along the magnetic dipole. A vector transformation from
the geodetic to the geomagnetic frame is given by

cosbcosfl cosbsinfB —siné
Vi = —sin 3 cos 3 0 1% (15)
sindcosf sinédsinf cosé

At a point on the Earth’s surface, local geodetic east,
north, and vertical are denoted by X,Y,Z, and geomag-
netic east, north, and vertical are denoted by Xm, Y,n,Zm
(Fig. 3). The magnetic field vector is given by

3 3
50 = B, (RE) sinf,,Y,, — 2B, (?—E> 08 0 Zim (16)

m m

where r,, is the radial distance, and @, is the magnetic
colatitude. The value B, is the amplitude of the magnetic
field at the Earth’s surface at the magnetic equator, and
is equal to 3.12 x 1079 tesla.

V. Analysis

A. First-Order Effect

According to Egs. (8)—(10), the first-order tonospheric
delay can be written as 4.48 x 1071A2T EC (meters). For
the GPS L1 and L2 frequencies, respectively, this trans-
lates to 16.2 cm and 26.7 cm of group delay (or phase
advance) for every one TEC unit (1 TEC unit = 106
electrons/m?). Daytime and nighttime, as well as solar
minimum and maximum ground TEC measurements, vary
between 1 and 500 TEC units. Therefore, first-order iono-
spheric group delay (phase advance) ranges between ~0.2
and 80 m for L1 and ~0.3 and 130 m for L2.

The first-order ionospheric term, which is about three
orders of magnitude larger than higher order terms, can
be eliminated by using the “ionospheric free” linear com-
bination, which, based on Eq. (8), is given by

(nﬁn)“‘(mhn)

S

C hR(f+ )

r
7z 10

As the first-order ionospheric term is eliminated, the dom-
inant ionospheric errors are due to the second- and third-
order terms, which are discussed below.

B. Second-Order Effect

The term By|cosdp|in Eq. (11) represents the absolute
value of the component of the By field along the line of
propagation; therefore, it can be replaced by |§o L|, where

(-) represents the inner product and & is the unit vector in
the direction of propagation.

Consider a station with magnetic colatitude and lon-

gitude Op, and ¢y, , respectively, observing a satellite with
elevation E,, and azimuth A,,, where A,, is measured from

magnetic north. Then k is given by

k== (cos Ep,sin A, X,

+ co8 Ep cos A Yom + sin E,,,Zm) (18)



therefore,

T'm

Ind R 3 i
|Bo . k‘ = By (‘—E‘) ’sin 0,, cos By, cos A,

—2cos 0 sin B, 19)
m

where ﬂ:n, Ty are the magnetic colatitude and radial dis-
tance of a point along the link, respectively. This term,
multiplied by the electron density, is the integrand of
Eq. (11), where one must think of r,, and 0;” as varying
along the line of integration. While the exact distribution
of electron density along the line of sight is needed to cal-
culate the second-order delay term, a useful approximation
can be derived by assuming that the ionosphere consists
of a very thin layer at altitude H. Then, the correspond-
ing rm and 6, at the intersection point between the line
of sight and the ionospheric layer are given (for E,, > 10

deg) by

rm =Re+ H (203‘)

2

cos A cos By + O ( i q> (20b)
Rg~

b = Om = R sn B

By combining Eqs. (8), (11), and (19), one can approxi-
mate the second-order ionospheric group delay (in units of
distance) by

3
second order ion. group delay = 2.61 x 10‘18/\3<EE)

T'm

X [sin 6,,, cos Ep, cos Ay — 2 cos 8. sin E,,| TEC (21)

where 7, and 0,, are given by Eq. (20). Setting H at
300 km and ignoring the factor between the absolute signs,
Eq. (21) implies that in the dipole approximation, the
second-order ionospheric group delay is on the order of
0.16 mm and 0.33 mm for L1 and L2, respectively, for
each TEC unit. The second-order ionospheric phase ad-
vance, on the other hand, is one-half of this eflect. When
forming the ionospheric free linear combination, some can-
cellation in the second-order term takes place; the residual
range error (RRE), which is defined as the difference be-
tween the dual-frequency corrected range [left-hand side
of Eq. (17)] and the true range, is then on the order of
—0.11 mm per TEC unit.

The relations between the magnetic colatitude and lon-
gitude, 8,, and ¢,,, and the geographical colatitude and
longitude, § and ¢, are given by

cos b, =sin é cos @sinf cos ¢

+sinésin @sinfsing + cosdcosd  (22)

tan ¢,, =

—sin #sinf cos ¢ + cos Fsin fsin @
cos 8(cos Bsinf cos ¢ + sin Fsin fsin ) — sin b cos §

(23)

The satellite elevation in local magnetic east-north—
vertical coordinates, E,,, is the same as the elevation in
local geodetic east-north—vertical coordinates, E. On the
other hand, the azimuths in these two coordinates are re-
lated through

A, = A+ arccos(sin ¢ sin ¢,, cos é cos 3
+ ¢0s ¢ cOs ¢y cOS 3 + sin @ cos ¢y, sin B

— ¢os ¢ sin ¢, cos §sin 3) (24)

Figure 4 shows the absolute value of the RRE due to
the second-order term. This is shown for two stations at
different longitudes and latitudes, tracking different GPS
satellites, as indicated on the figure. These errors are
calculated using the exact integral form of Eq. (11) and
assuming the Chapman layer distribution of Fig. 1 and
the magnetic field of a tilted dipole, as described above.
The angle x in Egs. (13) and (14) is determined based
on the assumption that the % axis (Fig. 3) is pointing to-
ward the sun at 12h UT. The exact calculation, referred
to as truth, is compared with an approximation obtained
from Egs. (20)-(24). According to the examples of Fig. 4,
the true second-order absolute RRE has an rms value of
1.25 cm, and can be as large as 4 cm at the lowest elevation
angle (10 deg). Using the thin-layer model at the 300-km
altitude as described above, it is possible to approximate
this effect to better than 90 percent on the average. The
difference between the truth and the approximation has an
average of 0.11 cm and a variance of 0.25 cm. This suggests
that a thin-layer model of the ionosplere can be very use-
ful in calibrating the second-order ionospheric effect and
therefore improving GPS-user range measurements.
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C. Third-Order Effect

Upon examining Eq. (12), one finds that the second
term, except during times of very strong magnetic storms,
contributes no more than a submillimeter of range error
for gigahertz frequencies. Therefore, one must consider the
first term, which can be simplified to (in units of meters,
kilograms, and seconds)

third-order ion. group delay = 3.0 x 10731)4 / NZ3dl

(25)

To get an approximate estimate of the integral of Eq. (25),
the authors use the shape parameter 7, defined by Brunner
and Gu [17] as

[ N2di

Nom [ NI (26)

For a single Chapman layer,  was estimated to be ~0.66
and almost independent of elevation [23,17]. Since this
ionospheric profile is dominated by a single layer (F2), the
authors believe that the shape parameter n in this case
will be close to 0.66. Therefore, one can approximate the
integral of Eq. (25) by 0.66 X Nipax X TEC. For Npax =
3.0 x 10'2(e/m®) and TEC = 10'3(e/m?) the third-order
term is estimated to be ~0.86 mm for L1, ~2.4 mm for L2,
and ~-0.66 mm for the RRE. A more exact estimate of

the third-order term based on Eq. (12) and the Chapman
distribution of Fig. 1 is shown in Fig. 4. In the examples
of Fig. 4, the delay ranges between 1 and 4 mm.

VI. Conclusion

The above results are summarized in Table 1, which
shows the amount of group delay due to first-, second-,
and third-order ionospheric terms in the zenith direction,
assuming a zenith TEC = 10'8(e/m?).

In employing a Chapman distribution and a dipole ap-
proximation for the magnetic field, it was possible to es-
timate the higher order ionospheric effects on range and
phase measurements. The second-order error can be sev-
eral centimeters for range as well as phase during daytime,
for a year near sunspot maximum. Moreover, since the
magnetic field is fixed to the Earth, and the GPS orbit, as
seen from a ground station, repeats itself daily (shifted by
~4 min per day), the diurnal shape of the second-order er-
ror is most likely to repeat its overall structure for several
days, at least to the extent that the overall electron density
distribution remains unchanged. Such daily repeatable er-
rors in range and phase will be mapped directly into orbital
and baseline estimation. This study shows that a rough
ionospheric model consisting of a thin shell at 300 km,
plus a knowledge of the TEC, allows one to calibrate the
second-order term to better than 90 percent. This implies
reducing the second-order ionospheric error to less than 2
mm on the average and, therefore, potentially improving
orbit determination and baseline solutions.
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Table 1. Estimated zenith ionospheric group delay due to 1/!2, 1/f3, and 1/!4 terms, for an arbitrary wavelength
A (microwave reglon), L1 and L2 frequencies as well as the residual range error with dual-frequency calibration.
It is assumed that the zenith TEC = 1078 (e/mz). The phase advance can be read from this table by multiplying

each number by = 1, -1/2, and ~1/3 for the 1/ 2, 1/ 13, and 1/1% terms, respectively.

Ionospheric expansion term A, MKS? units L1 L2 RRE

1/12 4.48 x 10~ 2TEC 16.2 m 26.7 m 0.0

1/58 x a 2.61 x 10718)\3TEC ~1.6 cm ~3.3 cm ~ —1.1 cm
(0<ax<?2)

1/f4(Nmax = 3.0 x 10'2¢/m?) ~ 2.0 x 1073\ N, TEC ~0.86 mm  ~2.4 mm ~ —0.66 mm

Calibrated 1/f2 based on a
thin-layer ionospheric model

~ 1-2 mm

*Meters, kilograms, and seconds.
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to geomagnetic local east, north, and vertical.
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Fig. 4. TEC and absolute second- and third-order ionospheric residual range errors along the line of sight tor ditferent GPS—ground
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